... MoyMath – Worksheets & Question Banks | IB MYP-DP, IGCSE, A-Level, CBSE, ICSE, AP: Solution of Area on the Coordinate Plane (Questions published on Dec 8, 2025)

Click and visit

Solution of Area on the Coordinate Plane (Questions published on Dec 8, 2025)

Area on the Coordinate Plane — Solutions (1–15)

Area on the Coordinate Plane

Full Step-by-Step Solutions (Problems 1–15)

Working conventions / reminders

  • For an equation of the form \(|x-h|+|y-k|=R\) the graph is a diamond (rotated square) with area \(2R^2\).
  • For \(a|x-h| + b|y-k| = c\): horizontal half-width \(=c/a\), vertical half-height \(=c/b\). Diagonals: \(d_x=2c/a,\ d_y=2c/b\). Area \(=\dfrac{d_x d_y}{2}.\)
  • Area of a circle: \(A=\pi r^2\). Distance from \((x_0,y_0)\) to line \(Ax+By+C=0\) is \(\dfrac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}\).

Solutions

  1. Problem 1.
    \(y = -|x+4| + 7\) and \(y = |x+4| - 5\). Find the enclosed area.
    1. Set the two expressions equal to find intersection points: \[ -|x+4|+7 = |x+4|-5 \Longrightarrow 12 = 2|x+4| \Longrightarrow |x+4|=6. \] So \(x+4 = \pm 6 \Rightarrow x = -10,\; x = 2.\)
    2. At those \(x\)-values, compute \(y\): \(y = |x+4|-5 = 6-5 = 1\). So intersections are \((-10,1)\) and \((2,1)\).
    3. The top vertex of the top curve \(y=-|x+4|+7\) is at \(x=-4\), \(y=7\). The bottom vertex of the lower curve \(y=|x+4|-5\) is at \((-4,-5)\).
    4. Horizontal diagonal length \(=2-(-10)=12\). Vertical diagonal length \(=7-(-5)=12\).
    Area \(=\dfrac{12\cdot12}{2}=72.\) \(\boxed{72}\)
  2. Problem 2.
    \(y = 12 - |x-6|\). Find the area of the region enclosed by the V.
    1. The vertex is at \((6,12)\). Find x-intercepts where \(y=0\): \[ 12 - |x-6| = 0 \Rightarrow |x-6| = 12 \Rightarrow x = -6,\; x=18. \]
    2. This forms an isosceles triangle with base length \(18-(-6)=24\) and height \(12\).
    Area \(=\tfrac12\cdot 24\cdot 12 = 144.\) \(\boxed{144}\)
  3. Problem 3.
    \(|x-8| + |y-1| = 10.\)
    This is a diamond centered at \((8,1)\) with parameter \(R=10\). Formula: area \(=2R^2\).
    Area \(=2\cdot 10^2 = 200.\) \(\boxed{200}\)
  4. Problem 4.
    \(3|x| + 2|y| = 18.\)
    1. When \(y=0\): \(3|x|=18\Rightarrow|x|=6\) so x-intercepts \((\pm6,0)\) ⇒ horizontal diagonal \(=12\).
    2. When \(x=0\): \(2|y|=18\Rightarrow|y|=9\) so y-intercepts \((0,\pm9)\) ⇒ vertical diagonal \(=18\).
    Area \(=\dfrac{12\cdot18}{2}=108.\) \(\boxed{108}\)
  5. Problem 5.
    \(4|x-2| + |y+3| = 20.\) Find the absolute difference between the diagonals.
    1. Horizontal diagonal: set \(y=-3\) so \(|y+3|=0\Rightarrow 4|x-2|=20\Rightarrow |x-2|=5\). Solutions \(x=-3,7\). Horizontal diagonal \(=7-(-3)=10\).
    2. Vertical diagonal: set \(x=2\) so \(|x-2|=0\Rightarrow |y+3|=20\Rightarrow y+3=\pm20\Rightarrow y=17\) or \(-23\). Vertical diagonal \(=17-(-23)=40\).
    Absolute difference \(=|40-10|=30.\) \(\boxed{30}\)
  6. Problem 6.
    \((x-4)^2 + (y-9)^2 = 25.\) Area?
    Radius \(r=\sqrt{25}=5\). Area of circle \(A=\pi r^2=\pi\cdot5^2=25\pi\).
    \(\boxed{25\pi}\)
  7. Problem 7.
    \(|x-a| + |y-2| = b\) has area \(72\). Find \(b\).
    Area of such a diamond \(= 2b^2\). So \(2b^2 = 72 \Rightarrow b^2 = 36 \Rightarrow b = 6\).
    \(\boxed{6}\)
  8. Problem 8.
    \(6|x+1| + 3|y-5| = k\) and area \(=54\). Find \(k\).
    Use formula: for \(a|x-h|+b|y-k|=c\), area \(= \dfrac{2c^2}{ab}\).
    Here \(a=6,\;b=3,\;c=k\). So area \(=\dfrac{2k^2}{6\cdot3}=\dfrac{2k^2}{18}=\dfrac{k^2}{9}.\)
    Set \(\dfrac{k^2}{9}=54 \Rightarrow k^2 = 486 = 81\cdot6 \Rightarrow k = \sqrt{486} = 9\sqrt{6}\).
    \(\boxed{9\sqrt{6}}\)
  9. Problem 9.
    \(7|x| + 24|y| = 84.\) A circle is inscribed — find its area.
    Consider the first-quadrant boundary line: \(7x + 24y = 84\). The inscribed circle will be tangent to that line and centered at the origin \((0,0)\).
    Distance from origin to line \(7x+24y-84=0\) is \[ r = \frac{| -84 |}{\sqrt{7^2 + 24^2}} = \frac{84}{25}. \]

    The distance from the center to each side is the radius of the inscribed circle. For the line \(7|x| + 24|y| = 84\), one side in the first quadrant is \(\displaystyle 7x + 24y = 84\). The distance from the origin to this line is: \[ r = \frac{84}{\sqrt{7^{2} + 24^{2}}} = \frac{84}{25} = \frac{84}{25}. \] Thus the area of the inscribed circle is: \[ \text{Area} = \pi r^{2} = \pi \left(\frac{84}{25}\right)^{2} = \frac{7056}{625}\pi. \]

    .
    \(\boxed{\dfrac{7056\pi}{625}}\)
  10. Problem 10.
    \((x-3)^2 + (y+4)^2 = 32.\) A square is inscribed in the circle — find the area of the square.
    Radius \(r=\sqrt{32}=4\sqrt{2}\). Diameter \(=2r=8\sqrt{2}\) equals the square's diagonal.
    Area of square \(= \dfrac{\text{(diagonal)}^2}{2} = \dfrac{(8\sqrt{2})^2}{2} = 64.\)
    \(\boxed{64}\)
  11. Problem 11.
    \(y = |x+10| - 3\) and \(y = -|x+10| + 9.\) Find enclosed area.
    Set equal: \(|x+10|-3 = -|x+10| + 9 \Rightarrow 2|x+10| = 12 \Rightarrow |x+10| = 6.\)
    So \(x+10 = \pm 6 \Rightarrow x = -16,\; -4\). At these points \(y = 6 - 3 = 3\). Intersection points \((-16,3)\) and \((-4,3)\).
    Vertex of top curve is \((-10,9)\). Vertex of bottom curve is \((-10,-3)\). Vertical diagonal \(=12\). Horizontal diagonal \(=12\).
    Area \(=\dfrac{12\cdot12}{2}=72.\) \(\boxed{72}\)
  12. Problem 12.
    \(|x-2| + 3|y| = 15.\) Find the area.
    Horizontal half-width \(=15\) ⇒ diagonal \(=30\). Vertical half-height \(=5\) ⇒ diagonal \(=10\).
    Area \(=\dfrac{30\cdot10}{2} = 150.\) \(\boxed{150}\)
  13. Problem 13.
    \(2|x-1| + 5|y+6| = p\). Diagonals differ by 6 — find \(p\).
    Horizontal diagonal \(d_x = p\).
    Vertical diagonal \(d_y = \frac{2p}{5}\).
    \(|d_x - d_y| = 6 \Rightarrow \left| p - \frac{2p}{5} \right| = 6 \Rightarrow \frac{3p}{5} = 6 \Rightarrow p = 10.\)
    \(\boxed{10}\)
  14. Problem 14.
    \((x+12)^2 + (y-1)^2 = 18.\) Area of a regular hexagon inscribed in this circle?
    Radius \(r=\sqrt{18}=3\sqrt{2}\). For a regular hexagon, side length \(s=r\).
    Area \(= \dfrac{3\sqrt{3}}{2} r^2.\)
    \[ A = \dfrac{3\sqrt{3}}{2}\cdot 18 = 27\sqrt{3}. \]
    \(\boxed{27\sqrt{3}}\)
  15. Problem 15.
    \(|x| + |y| = 14\). A rectangle with sides parallel to axes is inscribed. Maximize its area.
    Use first-quadrant point with \(x+y=14\).
    Area \(=4xy\).
    Max when \(x=y=7\).
    Maximum area \(=196.\) \(\boxed{196}\)

Answer summary (quick reference)

  1. 72
  2. 144
  3. 200
  4. 108
  5. 30
  6. \(25\pi\)
  7. 6
  8. \(9\sqrt{6}\)
  9. \(\dfrac{7056\pi}{625}\)
  10. 64
  11. 72
  12. 150
  13. 10
  14. 27\(\sqrt{3}\)
  15. 196

Hope it helps.

No comments:

Post a Comment